텔루르

텔루르
텔루르 구조식 이미지
카스 번호:
13494-80-9
한글명:
텔루르
동의어(한글):
텔레늄;텔레늄과그화합물;텔루르;텔루륨;텔루륨및그화합물
상품명:
Tellurium
동의어(영문):
TELLOY;tellur;urium L;TELLERIUM;TELLURIUM;Tellunium;nci-c60117;TellurStcke;elluriumatom;ellurium-125
CBNumber:
CB3853069
분자식:
Te
포뮬러 무게:
127.6
MOL 파일:
13494-80-9.mol

텔루르 속성

녹는점
450 °C (lit.)
끓는 점
990 °C (lit.)
밀도
6.24 g/mL at 25 °C (lit.)
증기압
0Pa at 25℃
저장 조건
Sealed in dry,Room Temperature
용해도
insoluble in H2O, benzene, CS2
색상
은백색
Specific Gravity
6.24
비저항
5.8-33 μΩ-cm, 20°C
수용성
물에 불용성, 벤젠, CS2 [MER06]
Merck
13,9201
노출 한도
TLV-TWA 0.1 mg (Te)/m3 (ACGIH)
PEL-TWA: 0.1 mg (Te)/m3 (OSHA)
TWA 0.1 mg (Te)/m3 (NIOSH)
.
InChIKey
VTLHPSMQDDEFRU-UHFFFAOYSA-N
CAS 데이터베이스
13494-80-9(CAS DataBase Reference)
EPA
Tellurium (13494-80-9)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 T
위험 카페고리 넘버 25
안전지침서 45-28A
유엔번호(UN No.) UN 3288 6.1/PG 3
WGK 독일 3
RTECS 번호 WY2625000
TSCA Yes
위험 등급 8
포장분류 III
HS 번호 28045000
유해 물질 데이터 13494-80-9(Hazardous Substances Data)
독성 A member element of group IVa in the Periodic Table with both metallic and non-metallic properties. Tellurium compounds of biological interest include the elemental form, as well as compounds with valences of 12 (telluride), 14 (tellurite), and 16 (tellurate). Commercial applications of tellurium include its use as a coloring agent and as an alloy with other metals. Industrial hazards generally involve the volatile forms including tellurium dioxide and hydrogen telluride rather than the less toxic elemental form. Exposure to potassium tellurite may also occur; this compound is known to cause hemolysis of erythrocytes, probably via its reduction product, telluride. Other non-nervous system effects of exposure to tellurium compounds include weight loss, blue/ black discoloration of skin, and a characteristic garlic breath odor. Animal models have clearly implicated tellurium in induction of specific neuropathological findings. These include its action as a teratogen in the induction of communicating hydrocephalus (treated rats give rise to affected offspring), lipofuscinosis, and peripheral neuropathy.
IDLA 25 mg Te/m3
기존화학 물질 KE-33095
그림문자(GHS): GHS hazard pictogramsGHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H317 알레르기성 피부 반응을 일으킬 수 있음 피부 과민성 물질 구분 1 경고 GHS hazard pictograms P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
H332 흡입하면 유해함 급성 독성 물질 흡입 구분 4 경고 GHS hazard pictograms P261, P271, P304+P340, P312
H413 장기적 영향에 의해 수생생물에 유해의 우려가 있음 수생 환경유해성 물질 - 만성 구분 4
예방조치문구:
P202 모든 안전 조치 문구를 읽고 이해하기 전에는 취급하지 마시오.
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P302+P352 피부에 묻으면 다량의 물로 씻으시오.
P308+P313 노출 또는 접촉이 우려되면 의학적인 조치· 조언를 구하시오.
NFPA 704
0
2 0

텔루르 C화학적 특성, 용도, 생산

개요

Tellurium is one of the rarest elements on earth similar to selenium, and was discovered in Transylvania in 1782 by Franz-Joseph Muller von Reichenstein. The name derived from the Latin word for earth. Tellurium is occasionally found naturally, more often as telluride of gold, calaverite.

화학적 성질

Tellurium is a grayish or silvery white, lustrous, crystalline, semimetallic element. It may exist in a hexagonal crystalline form or an amorphous powder.Soluble in sulfuric acid, nitric acid, potassium hydroxide, and potassium cyanide solutions; insoluble in water. Imparts garlic-like odor to breath, can be depilatory. It is a ptype semiconductor and its conductivity is sensitive to light exposure. It is found in sulfide ores and is produced as a by-product of copper or bismuth refining.

물리적 성질

Tellurium is a silver-white, brittle crystal with a metallic luster and has semiconductorcharacteristics. It is a metalloid that shares properties with both metals and nonmetals, andit has some properties similar to selenium and sulfur, located just above it in group 16 of theperiodic table.
There are two allotropic forms of tellurium: (1) the crystalline form that has a silvery metallicappearance and a density of 6.24 g/cm3, a melting point of 499.51°C, and a boiling point of988°C; and (2) the amorphous allotrope that is brown in color and has a density of 6.015g/cm3and ranges for the melting and boiling point temperatures similar to the crystalline form.

Isotopes

There are a total of 48 isotopes of tellurium. Eight of these are consideredstable. Three of the stable ones are actually radioactive but have such long half-livesthat they still contribute to the natural abundance of tellurium in the crust of the Earth.The isotope Te-123 (half-life of 6×10+14 years) contributes 0.89% of the total telluriumfound on Earth, Te-128 (half-life of 7.7×10+24 years) contributes 31.74% to the naturalabundance, and Te-130 (half-life of 0.79×10+21 years) contributes 34.08% to the telluriumin the Earth’s crust. The other five stable isotopes and the percentage of theirnatural abundance are as follows: Te-120 = 0.09%, Te-122 = 2.55%, Te-124 = 4.74%,Te-125 = 7.07%, and Te-126 = 18.84%. The other 40 isotopes are all radioactive withshort half-lives.

Origin of Name

The name “tellurium” is derived from the Latin word for Earth, tellus.

출처

Tellurium is the 71st most abundant element on Earth. It makes up a small portion ofigneous rocks and is sometimes found as a free element, but is more often recovered fromseveral ores. Its major ores are sylvanite (AgAuTe4), also known as graphic tellurium, calaverite,sylvanite, and krennerite, all with the same general formula (AuTe2). Other minor ores arenagyagite, black tellurium, hessite, altaite, and coloradoite. In addition, it is recovered fromgold telluride (AuTe2). Significant quantities are also recovered from the anode “slime” of theelectrolytic refining process of copper production.

Characteristics

The pure form of tellurium burns with a blue flame and forms tellurium dioxide (TeO2).It is brittle and is a poor conductor of electricity. It reacts with the halogens of group 17, butnot with many metals. When it reacts with gold, it forms gold telluride. Tellurium is insolublein water but readily reacts with nitric acid to produce tellurous acid. If inhaled, it produces agarlic-like odor on one’s breath.

용도

Tellurium is a common constituent of ores that contain silver, gold, lead, antimony, and bismuth, and it is often present in small amounts in coal. Tellurium is widely used in metallurgy because it improves the properties of copper, tin, lead-based alloys, steel, and cast iron. It is used in rubber manufacturing to increase heat resistance and to retard the aging of rubber hoses and cable coatings. Small amounts are used in the electronics industry for lasers and photoreceptors. Tellurium is not an essential micronutrient; therefore, it is not found in nutritional supplements.
As coloring agent in chinaware, porcelains, enamels, glass; reagent in producing black finish on silverware; in manufacture of special alloys of marked electrical resistance; in semiconductor research.

생산 방법

Elemental tellurium (Te) has some metallic properties, although it is classed as a nonmetal or metalloid. The name is derived from the Latin word for earth, tellus. Tellurium is occasionally found naturally, more often as telluride of gold, calaverite. The elemental form has a bright luster, is brittle, readily powders, and burns slowly in air. Tellurium exists in two allotropic forms, in the form of powder and hexagonal crystalline (isomorphous) with gray selenium. The concentration in the earth’s crust is about 0.002 ppm. It is recovered from anode muds during the refining of blister copper. It is also found in various sulfide ores along with selenium and is produced as a by-product of metal refineries. The United States, Canada, Peru, and Japan are the largest producers.
Tellurium’s industrial applications include its use as a metallurgical additive to improve the characteristics of alloys of copper, steel, lead, and bronze. Increased ductility results from its use in steel and copper alloys. Addition of tellurium to cast iron is used for chill control, and it is a basic part of blasting caps. It is used in some chemical processes as a catalyst for synthetic fiber production, and as a vulcanizing agent and accelerator in the processing of rubber.

정의

tellurium: Symbol Te. A silvery metalloidelement belonging to group16 (formerly VIB) of the periodictable; a.n. 52; r.a.m. 127.60; r.d. 6.24(crystalline); m.p. 449.5°C; b.p.989.8°C. It occurs mainly as telluridesin ores of gold, silver, copper,and nickel and it is obtained as a byproductin copper refining. There areeight natural isotopes and nine radioactiveisotopes. The element is usedin semiconductors and smallamounts are added to certain steels.Tellurium is also added in smallquantities to lead. Its chemistry issimilar to that of sulphur. It was discoveredby Franz Müller (1740–1825)in 1782.

일반 설명

Grayish-white, lustrous, brittle, crystalline solid; dark-gray to brown, amorphous powder with metallic characteristics. Used as a coloring agent in chinaware, porcelains, enamels, glass; producing black finish on silverware; semiconductor devices and research; manufacturing special alloys of marked electrical resistance. Improves mechanical properties of lead; powerful carbide stabilizer in cast iron, Tellurium vapor in "daylight" lamps, vulcanization of rubber. Blasting caps. Semiconductor research.

반응 프로필

Tellurium is attacked by chlorine fluoride with incandescence. When Tellurium and potassium are warmed in an atmosphere of hydrogen, combination occurs with incandescence [Mellor 11:40. 1946-47]. Burning Tellurium produces toxic Tellurium oxide gas. Avoid solid sodium, halogens, interhalogens, metals, hexalithium disilicide. Reacts with nitric acid; reacts with concentrated sulfuric acid forming a red solution. Dissolves in potassium hydroxide in the presence of air with formation of deep red solution; combines with halogens. Avoid antimony and chlorine trifluoride; chlorine trifluoride reacts vigorously with Tellurium producing flame. Fluorine and Tellurium react with incandescence. Lithium silicide attacks Tellurium with incandescence. Reaction with zinc is accompanied by incandescence (same potential with cadmium, only hazard is less). A vigorous reaction results when liquid Tellurium is poured over solid sodium [EPA, 1998].

위험도

All forms of tellurium are toxic in gas form. The vapors of all the compounds of the dustand powder forms of the element should not be inhaled or ingested. When a person is poisonedwith tellurium, even in small amounts, the breath will smell like garlic.

건강위험

Although tellurium in elemental form haslow toxicity, ingestion can produce nausea,vomiting, tremors, convulsions, and centralnervous system depression. In addition,exposure to the metal or to its compoundscan generate garlic-like odor in breath, sweat,and urine. Such odor is imparted by dimethyltelluride that is formed in the body. Oralintake of large doses of the metal or itscompounds can be lethal. Clinical symptomsare similar for most tellurium salts,which include headache, drowsiness, lossof appetite, nausea, tremors, and convulsions.High exposure can produce metallictaste, dry throat, chill and other symptoms.Inhalation of dust or fume of the metalcan cause irritation of the respiratory tract.Chronic exposure can produce bronchitis andpneumonia.

화재위험

A finely divided suspension of elemental Tellurium in air will explode. Insoluble in water. Burning Tellurium produces toxic Tellurium oxide gas. Avoid solid sodium, halogens, interhalogens, metals, hexalithium disilicide. Reacts with nitric acid; reacts with concentrated sulfuric acid forming a red solution. Dissolves in potassium hydroxide in the presence of air with formation of deep red solution; combines with halogens. Avoid antimony and chlorine trifluoride; chlorine trifluoride reacts vigorously with Tellurium producing flame. Fluorine and Tellurium react with incandescence. Lithium silicide attacks Tellurium with incandescence. Reaction with zinc is accompanied by incandescence (same potential with cadmium, only hazard is less). A vigorous reaction results when liquid Tellurium is poured over solid sodium.

Safety Profile

Poison by ingestion and intratracheal routes. An experimental teratogen. Exposure causes nausea, vomiting, tremors, convulsions, respiratory arrest, central nervous system depression, and garlic odor to breath. Aerosols of tellurium, tellurium dioxide, and hydrogen telluride cause irritation of the respiratory system and may lead to the development of bronchitis and pneumonia. Experimental reproductive effects. Under the proper conditions it undergoes hazardous reactions with halogens (e.g., chlorine, fluorine), interhalogens (e.g., bromine pentafluoride, chlorine fluoride, chlorine trifluoride), metals (e.g., cadmium, potassium, sodium, platinum, tin, zinc), hexalithium disilicide, silver bromate, silver iodate. When heated to decomposition it emits toxic fumes of Te. See also TELLURIUM COMPOUNDS.

잠재적 노출

The primary use of tellurium is in the vulcanization of rubber and as an additive in ferritic steel production. It is also used as a carbide stabilizer in cast iron, a chemical catalyst; a coloring agent in glazes and glass; a thermocoupling material in refrigerating equipment; as an additive to selenium rectifiers; in alloys of lead, copper, steel, and tin for increased resistance to corrosion and stress, workability, machinability, and creep strength; and in certain culture media in bacteriology. Since tellurium is present in silver, copper, lead, and bismuth ores, exposure may occur during purification of these ores.

환경귀착

Metals are recalcitrant to degradation; therefore, no biodegradation studies have been performed on tellurium. No aquatic bioaccumulation data exist for tellurium; however, based on its density and low water solubility, it is unlikely to present a concern for bioaccumulation in the water column. No environmental monitoring data are available on the levels of tellurium in sediment or sediment-dwelling organisms. Therefore, it is unclear whether tellurium has the potential to bioaccumulate in this compartment. In humans, tellurium accumulates in the bones. Based on this, it may be assumed that tellurium has the potential to bioaccumulate in vertebrates.

운송 방법

UN3288 Toxic solids, inorganic, n.o.s., Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required.

Purification Methods

Purify it by zone refining and repeated sublimation to an impurity of less than 1 part in 108 (except for surface contamination by TeO2). [Machol & Westrum J Am Chem Soc 80 2950 1958.] Tellurium is volatile at 500o/0.2mm. It has also been purified by electrode deposition [Mathers & Turner Trans Amer Electrochem Soc 54 293 1928].

비 호환성

Finely divided powder or dust may be flammable and explosive. Violent reaction with halogens, interhalogens, zinc and lithium silicide; with incandescence. Incompatible with oxidizers, cadmium; strong bases; chemically active metals; silver bromate; nitric acid.

텔루르 준비 용품 및 원자재

원자재

준비 용품


텔루르 공급 업체

글로벌( 297)공급 업체
공급자 전화 이메일 국가 제품 수 이점
Henan Tianfu Chemical Co.,Ltd.
+86-0371-55170693 +86-19937530512
info@tianfuchem.com China 21688 55
career henan chemical co
+86-0371-86658258
sales@coreychem.com China 29914 58
SHANDONG ZHI SHANG CHEMICAL CO.LTD
+86 18953170293
sales@sdzschem.com China 2931 58
Hubei Jusheng Technology Co.,Ltd.
18871490254
linda@hubeijusheng.com CHINA 28180 58
Hebei Jimi Trading Co., Ltd.
+86 319 5273535
bestoneforyou@sina.com CHINA 288 58
Chongqing Chemdad Co., Ltd
+86-023-61398051 +8613650506873
sales@chemdad.com China 39916 58
Richest Group Ltd
18017061086
oled@richest-group.com CHINA 5601 58
Antai Fine Chemical Technology Co.,Limited
18503026267
info@antaichem.com CHINA 9641 58
Zhengzhou Alfa Chemical Co.,Ltd
+8618530059196
sale04@alfachem.cn China 12803 58
SIMAGCHEM CORP
+86-13806087780
sale@simagchem.com China 17367 58

텔루르 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved